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Overview

@ The Problem

e Restriction to nucleotide & amino acid sequences
o Existing methods

@ New developments

Exact closest string as a CSP

Search heuristics

Computational tools and techniques

Distributed methods

Hybrid Numeric/CSP approach

@ Implications
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Closest String

@ Measure of self-similarity within a set of strings of equal
length
@ Any metric can be used, but Hamming distance is standard
e number of positions at which the corresponding symbols are
different

@ A solution is a string with the smallest possible maximum
Hamming distance from any input string

@ Known to be be NP-complete for alphabets of arbitrary size

@ Believed to be NP-complete for fixed alphabets

o |Z|! candidate solutions, where ¥ and L are the alphabet and
string length
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Bioinformatics Applications

@ DNA sequences

e X ={CGAT} @ Peptide sequences
@ Consensus patterns e |X| =20 (or22)
@ Motif representation e Too complex for
o See the paper for meaningful calculations
citations

. @ (currently)
@ Homo sapiens or

Neanderthal?
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State of the Art

@ An approximate solution (to within 4/3 + €) of the minimal
distance d can be obtained in polynomial time, using
Genetic Algorithms

@ Excellent exact results — provided that close bounds have
already been identified — have been obtained by modelling
and solving as an IP (Integer Programming Problem)

@ IP is useless for finding all solutions

e IP branch and bound is optimised for optimisation
e No exhaustive search is performed, subject to sub-trees being
ruled out by logical impossibility

@ Our aim is to find the exact d, together with all witnesses
having that distance
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Constraint Satisfaction Problems

Consist of
@ A set of constraints C
e Acting on a finite set of variables A := {A1, Ay, ..., An}
@ Each of which has a finite domain of possible values
Dl' = D(A,) g A
@ A solution to Y is an instantiation of all of the variables in A
such that no constraint in C is violated.

@ There may — or may not — be an objective function to be

minimised
Are solved by
o Al backtrack search
@ Heuristics for search order, consistency, ...
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Exact Closest String as a CSP

Given S, a set of N strings of length L over alphabet X, we first
compute the Hamming Diameter HD(S) and use this to provide
a lower bound, 4,,;,, for the optimal distance d.

Y (S, din, HD(S)) denotes the Closest String instance in which
the set of variables is A := A1 U Ay U Az U A4, where

Q@ A is the array [CSy,CSy, ..., CSy] of variables representing
the closest string, each such variable having domain 1...4

@ Ajisan N x L array of binary variables used to calculate
Hamming Distances from A; to the input strings S

@ Ajisthearray [Dy,Dy,...,Dy]| of variables representing the
distance of each string in S to the current CS candidate, each
such variable having domain d,,;, through HD(S)

@ A, is the single distance variable d with domain d,,,;,, XD

through HD(S).
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Exact Closest String as a CSP

The constraints are:
Q A:(i,j) = 0iff 5;(j) = A1(j)
@ A;(k) is the sum of row k of A,
@ A, is the maximum value appearing in A3

©Q A4 is minimised: if a solution is found with A4 = d, search
for another solution with Ay =d — 1 (unless d = d,,;,,).

Once an optimal 4 is found, we can carry on exploring the tree to
find all the solutions for that distance
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Position Weight Matrices

Position 1 2 3 4
A 14 24 58 4.8
& 24 0 6.5 4.0
G 0 37 0 08
T 36 1.7 71 0
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Stormo and Zhao; “Determining the specificity of protein — DNA interactions"; Nature Reviews Genetics 11, 751-760

(2010)
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Position Weight Matrices

GCGTGG 0
GCGGEGEG 08
ACGTGGE 14
GCGTGG 17
GCGTAG 2.1
ACGGGG 2.2
GAGTGG 24
GTGGGG 2.5
GCGGAG 29

a '
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Position Weight Matrices

2

Information content

0.5

Paosition

Tom Kelsey ICCS 2011 2011-02-06 11 /16



@ Our CSP solution works

@ We use the MINION solver that has solved several
large-scale problems

o It is the first framework for obtaining all exact closest strings

@ Using search heuristics from bioinformatics gives orders of
magnitude speedup (in general)

@ Showing that an optimal d is optimal is still difficult

e Distribute the problem @ Hybrid methods

@ Sending kill signals to jobs o IP is known to work well
when a new 4 is found within tight bounds

@ Work up from a lower @ CSP method is good at $ 50
bound as well as down finding tight bounds ’%’
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A recursive distributed algorithm to solve any CSP

Input :A CSPY, a cutoff period Ty,x and a branching factor K
Output: Either 1% solution, or a guarantee that there are none

while not Solved?(Y) do
Send Y to a node
Solve(Y, Tix,0)
if Solved?(Y) then Return solution
else
Y < Y with new constraints ruling out previous search
Split Y into K subproblems Y1, Y>, ..., Yk
do in parallel

forl <k <Kdo

| Solve(Yk, Thax,K)

end
end
end

end
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Distributed Exact Closest String

@ We first run Minion on the original problem with the PWM
ordering heuristic as a single process

o we have shown that this will quickly lower the upper bound,
in general
e From above, we carry on optimising as before, but using the
recursive distributed algorithm

@ From below we create instances each having a fixed
distance, the idea being to exhaustively rule out any closest
strings at these distances
e these instances are run on the compute nodes at the same
time as the optimisation sub-problems
o If at any stage we obtain a candidate closest string at a
distance for which all lower distances have been ruled out,
then this is our solution X0
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A hybrid numeric/CSP algorithm

Input :Y°(S,d,,;,, HD(S))
TOL, a limit for the gap between the bounds
Output: The optimal distance & a closest string to S
Seck closer distance bounds for Y°(S, d,in, HD(S)) using CSP alone;
while ‘dhigh - dlow’ < TOL do
Run CSP on Y°(S, d,y,in, HD(S))
Output djy, and d,ig, when updated
end
Once bounds are close enough, send to numeric IP;
if TOL > 1A ‘dhigh — dlow’ < TOL then
Formulate the remaining problem as an IP problem
Search for solution using numeric branch and bound

end
if |dhigh — dlow| = TOL =1 then
| Formulate the remaining problem as a fixed d instance >

end %“
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Implications

@ The hybrid algorithm can also be distributed
@ The aim is to combine the best features of each approach

@ Web scale facilities are needed for large problems

e Google exacyle: projects that can consume at least 100 million
core-hours
e Announced April, 2011

@ We have been approached by a research group from the
Friedrich Schiller Universitit, Jena, Germany

@ They have new numeric results, and we hope to combine
our work with theirs later this year
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