

MACHINE SCIENCE IN BIOMEDICINE: PRACTICALITIES, PITFALLS AND POTENTIAL

Tom Kelsey – University of St Andrews Hamish Wallace – University of Edinburgh

Machine Science

- A hot topic in the theory and philosophy of modern science
- Recent claims:
- "within a decade, even more powerful tools will enable automated, high-volume hypothesis generation to guide highthroughput experiments in biomedicine, chemistry, physics, and even the social sciences"
 - J Evans, A Rzhetsky, "Machine Science."
 Science, 329 (5990); 399–400, Jul. 2010.

Examples

- The modern scientific literature is full of data-driven studies
- Providing hypotheses for further investigation
- Canonical "old-school" example is the double-helix structure of DNA
 - proposed by Watson & Crick after analysis of data from other researchers

Structure of DNA

- Watson & Crick, "A Structure for Deoxyribose Nucleic Acid", Nature, 1953
- Paper contains no experimental proofs
 - Contains only hypotheses
- They collected no data
 - Franklin, Wilkins, Gosling, Pauling, Chargaff, ...
 - They failed to fully acknowledge these sources
 - But won the race to publish

Methodology

- Find, retrieve & classify data
 - raw microarray freely available
 - other data from tables & plots
 - yet more from descriptive statistics
- Look for patterns, models & insights
- (Hopefully) validate
 - compare results against unseen data
 - perform specific laboratory experiments

Advantages

- Inexpensive
 - no wet lab resources required
- Provides more than just hypotheses
 - effect sizes
 - power, cohort sizes, ...
- Tool support
 - data mining
 - text mining
 - machine learning
 - non-linear regression, DE solvers, grid/cloud, ...

- The modern trend is for biomedical data to be freely available
 - data repositories
 - supplementary information in open access journals
- This is far from pervasive
 - and many important studies report
 - (or have reported)
 - summarised data

- Tabularised data is easily converted to CSV form using textual manipulation tools
- Chart data takes more effort
 - tools like Plot Digitizer allow calibration of axes, followed by retrieval of data points
 - repeated data points have to be derived from manual analysis of the descriptive statistics
 - or omitted

- What if we only have descriptive statistics?
- Equivalent datasets can be recreated
- Example: 58,673 measurements of ovarian volume (Pavlik et al.)
 - too many for a scatterplot
 - authors unwilling to grant access
 - log-adjusted means and SDs published

$$\mu = e^{x + \frac{1}{2}y^2}$$

$$\sigma = e^{2x+y^2}(e^{y^2} - 1)$$

Solve for x and y to obtain log-unadjusted mean and SD

Repeat as many times as needed for k-fold cross-validation

Practicality 2. Data search

- All text-mining tools depend on search terms used
- Different terms can relate to the same things
 - MRI and NMR
 - AMH and MIS
- Natural language problems are routinely ignored
 - no obvious solution to this problem
 - unless the literature is translated to, say, English
 - which isn't going to happen

Practicality 3. Homgeneity

- Is is safe to combine or compare data from different studies?
- It should be, if enough information is given so that replication is possible
 - underlying assumption in science that results can be tested by others
- In practice, great care must be taken
 - assays used
 - inclusion/exclusion criteria
 - detection limits

- Non-exhaustive search for data
- Inclusion of poor quality data
 - The first phase of search can easily be done by students
 - Several iterations will be needed to add missed data and exclude poor data
 - This has to be done by experts in the field
- Even an expert will miss information in a language he/she can't understand

- Over-reliance on full automation
 - ruling out important historic data & results
- Over-reliance on favoured analytical tools
 - Computer scientists and mathematicians make important contributions
 - But low-level human analysis is vital
 - Clear danger of computational tools looking for a biomedical application
 - with the main focus of research being the tool itself
- Where will the study be published?

- Under analysis
 - Biomedical researchers seem all to have done the same course
 - p-values, ROC AUC, not much else
 - Confidence intervals & prediction limits are more useful
- Little or no independent validation
 - Ideally using wholly unseen data
 - Other validation techniques exist
 - How well would your results generalise to unseen data?

- Assumption that full automation is possible
 - human experts have to read and understand the minutiae of methods sections
 - even for open access, shared data studies
 - so that the right conclusions are being based on the right tools applied to the right data
- Inertia in the scientific community
 - "What was your hypothesis?"
 - "Where is your own data?"
 - "Why have you done no experiments?"

Potential

- Time is on our side
 - more and better data & tools in the pipeline
 - fuller automation is a reality
- Small errors in data retrieval/re-creation can often be neglected
 - many biomedical measurement techniques have standard errors of 10% or more
 - so as long as analytic errors are not systematically skewed, the new data is as good as the original data

Potential

- Scope for interaction with wet labs
 - machine science based on hypothesis-led research
 - leading to hypotheses for testing
 - leading to data for machine science...
- Funding bodies broadly support the idea
 - NIH requires open access dissemination
 - data repositories are becoming mandatory
 - UK BBRC will not fund "lab only" grants

Summary

- Machine science is exciting & rewarding
 - important results are being published daily
- Multi-disciplinary teamwork is vital
 - I know little about angiogenesis regulation in rodent models
 - My colleagues know little about non-linear regression
- Inter-disciplinary co-operation is even more important
 - there are no "junior partners"

References

- 2010; W H B Wallace, T W Kelsey; "Human ovarian reserve from conception to the menopause"; PLoS ONE; 5(1): e8772. doi:10.1371/journal.pone.0008772
- 2004; W H B Wallace, T W Kelsey; "Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography"; Human Reproduction; 19(7):1612-1617;
- 2011; T W Kelsey, Wright, S M Nelson, R A Anderson, W H B Wallace; "A validated model of serum anti-Mullerian hormone from conception to menopause"; PLoS Computational Biology; In press
- 2011; S M Nelson, D A Lawlor; "Predicting live birth, preterm and low birth weight infant after in-vitro fertilisation: A prospective study of 144,018 treatment cycles"; PLoS Medicine; In press