The treatment finishes: what then? Empowering yourself to be a survivor Professor W Hamish Wallace Consultant Paediatric Oncologist, Edinburgh Scotland, UK hamish.wallace@nhs.net # Improved Five Year Survival (1966-2000) ### Improved survival rates - * Paediatric oncology units - Clinicaltrials - * Intensifying treatment - * Supportive care ### Cure at a cost Sustain survival rates Minimise late effects ## Lucca ### LUCCA - * Learn - * Understand - * Contact - * Communication - * Achieve ### LUCCA - * Learn about your diagnosis and treatment - It is not the cancer diagnosis that determines the late effects you are at risk of, it is the actual treatment you received... - * Surgery - * Chemotherapy - * Radiotherapy ### L<u>U</u>CCA #### *Understand - * How your treatment may put you at risk of a late effect - * Anthracycline exposure Cardiomyopathy - * Radiotherapy Second primary cancer - * Alkylating agents &/or Radiotherapy to the pelvis infertility ### LU<u>C</u>CA - *Contact - * Key worker (may change as you grow older - * Nurse - * Doctor - * Oncologist/Haematologist - * Primary care Physician ## LUC<u>C</u>A * Communication - * Learn and understand your long-tem risks - Discuss them with your Key Worker - Plan your own long-term follow-up # LUCCA * Achieve your potential ### Benefits of long-term follow-up - * Decrease morbidity and mortality by identifying and treating treatment-related late effects - * Educate survivors - * Encouragement of health promoting behaviour for improved outcomes - * Increased patient satisfaction/quality of life - * Research - * Follow new treatments/treatment regimens over the longterm # Evidence-based guidelines for Young Survivors of Cancer # SIGN 76: long term follow up of survivors of childhood cancer¹ All survivors of childhood cancer should be actively followed up for life Each survivor of childhood cancer should have access to an appropriate designated key worker to co-ordinate care At the end of a course of cancer treatment, patients, their parents/carers and GPs should be given a summary of the treatment and a list of signs of late effects to look out for Reference: 1. SIGN 76. Long term follow-up of survivors of childhood cancer, January 2004 # CCLG: Therapy-based long-term follow-up practice statement Guidance for surveillance of survivors at least 3 years off therapy Protocol 1 = impaired quality of life Protocol 2 = secondary malignancy Protocol 3 = transfusionassociated complications THERAPY RASID LONG TERM FOLLOW UP THE STREET STATE MENT UNITED BINGGOR CHARGEST CANCER STEDY GROUP LATE EFFECTS GROUP ENTORS R Shower (Cled willow "Ded oldrice) Robe Ask Shower Cred of white in a street WHI White Colled willow in a street Hearth Reduced before the above the street Hearth Reduced before the above the street Gold Levin (Order of the New York) September 1 and a Protocols should be used in out-patient clinic Summarize treatment received under the headings: - Chemotherapy - Radiotherapy - Surgery Work through "Treatment/Potential late adverse effects" lists and select appropriate follow-up protocol ### SIGN 132 updates SIGN 76 (2004) Wallace, W.H.B., Thompson, L. & Anderson, R.A., 2013 BMJ # International Late Effects of Childhood Cancer Guideline Harmonization Group #### **IGHG** Worldwide endeavor to collaborate in guideline development #### **Initiated by** National guideline groups Cochrane Childhood Cancer Group In partnership with the PanCareSurFup Consortium # International Late Effects of Childhood Cancer Guideline Harmonization Group #### Main goal To establish a common vision and integrated strategy for the surveillance of late effects in childhood, adolescent and young adult cancer survivors #### **Aims** Reduce duplication of effort Combine international expertise Optimize quality of care Improve quality of life ### **Guideline development** ## Traffic Lights #### **Cardiovascular disease** Cardiac Dysfunction #### **Atherosclerosis** #### Reno-vascular ### HF risk by anthracycline dose Blanco JG, et al. J Clin Oncol. 2012 Van der Pal HJ, et al. J Clin Oncol. 2012 #### **General recommendation** Survivors treated with anthracyclines and/or chest radiation and their providers should be aware of the risk of cardiomyopathy. # Who needs surveillance? Anthracyclines Cardiomyopathy surveillance is recommended for survivors treated with high dose (≥ 250 mg/m²) anthracyclines. Cardiomyopathy surveillance <u>is reasonable</u> for survivors treated with moderate dose (> 100 to < 250 mg/m²) anthracyclines. Cardiomyopathy surveillance <u>may be reasonable</u> for survivors treated with low dose (< 100 mg/m²) anthracyclines. # Who needs surveillance? Chest radiation Cardiomyopathy surveillance <u>is recommended</u> for survivors treated with high dose (\geq 35 Gy) chest radiation. Cardiomyopathy surveillance <u>may be reasonable</u> for survivors treated with moderate dose (\geq 15 < 35 Gy) chest radiation. No recommendation can be formulated for cardiomyopathy surveillance for survivors treated with low dose (< 15 Gy) chest irradiation with conventional fractionation. # Who needs surveillance? Anthracyclines + Chest radiation Cardiomyopathy surveillance <u>is recommended</u> for survivors treated with moderate-high dose anthracyclines (<u>></u> 100 mg/m2) and moderate-high dose chest radiation (<u>></u> 15 Gy) No recommendation can be formulated for surveillance: - Younger (<5 years) age at exposure - Dexrazoxane - Different strategies by anthracycline analogue # WG2: What surveillance modality should be used? Echocardiography <u>is recommended</u> as the primary cardiomyopathy surveillance modality for assessment of cardiac function in survivors treated with anthracyclines and/or chest radiation # WG3: At what frequency should surveillance be performed? High Risk survivors Cardiomyopathy surveillance <u>is recommended</u> for High Risk survivors to begin no later than 2 years after completion of cardiotoxic therapy, repeated at 5 years after diagnosis and continued every 5 years thereafter. More frequent cardiomyopathy surveillance <u>is</u> reasonable for High Risk survivors. Lifelong cardiomyopathy surveillance <u>may be reasonable</u> for High Risk survivors. # Breast cancer surveillance recommendations THE LANCET Oncology 2013; 14: e621-29 Mulder RL, Kremer LCM, Hudson MM, Bhatia S, Landier W, Levitt G, Constine LS, Wallace WH, van Leeuwen FE, Ronckers CM, Henderson TO, Dwyer M, Skinner R, Oeffinger KC #### **Breast cancer risk** Moskowitz et al. J Clin Oncol 2014 #### **General recommendation** Female childhood, adolescent and young adult cancer survivors treated with chest radiation and their providers should be aware of the breast cancer risk. ### Breast cancer risk by radiation dose #### **High-dose chest RT (≥20 Gy)** High level evidence for increased risk #### Low- to moderate-dose chest RT (1-19 Gy) Insufficient evidence Linear dose response Lack of consideration of volume #### Who needs breast cancer surveillance? Breast cancer surveillance <u>is recommended</u> for female childhood, adolescent and young adult cancer survivors treated with ≥20 Gy chest radiation. Breast cancer surveillance <u>is reasonable</u> for female childhood, adolescent and young adult cancer survivors treated with 10-19 Gy chest radiation based on clinical judgment and considering additional risk factors. Breast cancer surveillance <u>may be reasonable</u> for female childhood, adolescent and young adult cancer survivors treated with 1-9 Gy chest radiation based on clinical judgment and considering additional risk factors. # At what age should breast cancer surveillance be initiated? Moskowitz et al. J Clin Oncol 2014 ## At what age should breast cancer surveillance be initiated? Initiation of breast cancer surveillance <u>is recommended</u> at age 25 years or ≥8 years from radiation (whichever occurs last) for female childhood, adolescent and young adult cancer survivors treated with ≥20 Gy chest radiation. # At what frequency should breast cancer surveillance be performed? Annual breast cancer surveillance <u>is recommended</u> for female childhood, adolescent and young adult cancer survivors treated with ≥20 Gy chest radiation for at least up to 50 years of age. ## What surveillance modality should be used? ### **Mammography and MRI** Combination superior to either test alone Evidence insufficient to recommend ideal imaging modality Uncertainty balance benefits versus harms ## What surveillance modality should be used? Mammography or breast MRI or a combination of mammography and breast MRI <u>is recommended</u> for female childhood, adolescent and young adult cancer survivors treated with chest radiation. ### The Wallace-Kelsey Model (Five parameter asymmetric double-Gaussian cumulative curve) $$log_{10}(y) = \frac{a}{4} \left[1 + \operatorname{Erf}\left(\frac{x+b+\frac{c}{2}}{d\sqrt{2}}\right) \right] \left[1 - \operatorname{Erf}\left(\frac{x+b-\frac{c}{2}}{e\sqrt{2}}\right) \right]$$ Wallace & Kelsey (2010) PloS ONE ## Ovarian reserve: Conception to Menopause ## Ovarian reserve: Conception to Menopause ### Sertoli Cell Figure 1. The validated model, log-adjusted testosterone values. Kelsey TW, Li LQ, Mitchell RT, Whelan A, et al. (2014) A Validated Age-Related Normative Model for Male Total Testosterone Shows Increasing Variance but No Decline after Age 40 Years. PLoS ONE 9(10): e109346. doi:10.1371/journal.pone.0109346 ## Key features of the 3 options for fertility preservation for women - * Embryo cryopreservation - Established but require time and a partner - * Oocyte cryopreservation - Established but require time and hormone stimulation (success rate per oocyte low) - * Ovarian tissue cryopreservation - Minimal delay - No lower age limit - Surgical procedure - Allows for future developments ## Ovarian tissue cryopreservation: World-wide experience - At least 39 pregnancies worldwide after othotopic reimplantation of frozen– thawed ovarian cortex - Success rate is unclear as the denominator is unknown - No pregnancies reported following the reimplantation of ovarian tissue harvested pre-pubertally - Young children are potentially ideal candidates Donnez, J. & Dolmans, M.-M. Nat. Rev. Endocrinol. 9, 735–749 (2013) #### Children born from transplantation of frozen/thawed ovarian tissue ## Thank You ### A Patient #### March 2011 (age 15 years) - Six month H/O of intense pruritis of her feet - Three month H/O fever, night sweats, lethargy, pallor, poor appetite and weight loss - Widespread LN lower cervical, mediastinum, abdomen ## Risk assessment for Fertility preservation #### Intrinsic factors - Heath status of patient - Consent (Patient/Parent) - Assessment of ovarian reserve #### Extrinsic factors - Nature of predicted treatment - High/Medium/Low/Uncertain Risk - Time available - Expertise available ### Diagnosis and Staging - Mediastinal lymph node biopsy - Hodgkin's lymphoma - Insertion of double lumen portacath Laparoscopic ovarian biopsy and cryopreservation of ovarian cortical strips ### Laura - EuroNet-PHL-C1Protocol: - Treatment Group 3 (TG3) - Two cycles of OEPA - Four cycles of COPDAC or COPP ### EuroNet-PHL-C-1 ### Multidisciplinary team (MDT) #### NICE guidelines recommend that the late effects MDT should include¹ Lead clinical (oncologist with expertise in late effects) Key worker Specialist nurse Endocrinologist Appropriate allied health professional Psychological services professional #### SIGN guidelines recommend that the MDT may include:2 Adult oncologist Paediatric neurosurgeon Clinical psychologist Paediatric oncologist GP Radiation oncologist Paediatric endocrinologist Social worker Paediatric neurologist Specialist nurse/nurse practitioner Dentist Optician ### Risk increases over time Van der Pal HJ, et al. J Clin Oncol. 2012 Mulrooney, et al. BMJ. 2009;