Fertility after childhood cancer: Who is at risk and what can be done

> Professor W Hamish B Wallace Consultant Paediatric Oncologist, Edinburgh Scotland, UK

> > UCLH 26.02.14

### Improved Five Year Survival (1966-2000)



### Longterm survival after Hodgkin lymphoma

Results of the DAL78 - 90 studies



Prof. Schellong (late effects report)

### A Patient



March 2011 (age 15 years)

Six month H/O of intense pruritis of her feet

Three month H/O fever, night sweats, lethargy, pallor, poor appetite and weight loss

Widespread LN – lower cervical, mediastinum, abdomen



### Laura



#### EuroNet-PHL-C1 Protocol:

Treatment Group 3 (TG3)

Two cycles of OEPA

Four cycles of COPDAC

### EuroNet-PHL-C-1



Wallace WH. UK Chief Investigator

CRUK support 400K

### Stage IVB Hodgkin lymphoma



# Risk assessment for Fertility preservation

#### Intrinsic factors

- Heath status of patient
- Consent (Patient/Parent)
- Assessment of ovarian reserve

#### **Extrinsic factors**

- Nature of predicted treatment
  - High/Medium/Low/Uncertain Risk
- Time available
- Expertise available

Wallace WH, Critchley HOD & Anderson RA. JCO, 2012

### Infertility - Risk Factors

RT to HPA or a field that includes testes/ovaries

Busulphan

BCNU

CCNU

Cyclophosphamide

Ifosfamide

Melphalan

Mustine Nitrogen mustard Procarbazine Thiotepa Chlorambucil Cytarabine

The pre-pubertal gonad is not protected

### **Risk of infertility**

| Low risk (<20%)                                                                                                                           | Medium risk                                                                                                                       | High risk (>80%)                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ALL<br>Wilms' tumour<br>Brain tumour<br>Sx, RT < 24Gy<br>Soft tissue sarcoma<br>(stage1)<br><b>Hodgkin's</b><br>Lymphoma<br>HL(Low stage) | AML<br>Osteosarcoma<br>Ewing's sarcoma<br>STS: stage II/III<br>Neuroblastoma<br>NHL<br>Brain tumour<br>RT>24Gy<br>HL (High Stage) | Total Body<br>Irradiation<br>Pelvic/testes RT<br>Chemo pre BMT<br>Metastatic Ewing's<br><b>HL (Pelvic RT)</b> |

Wallace, Anderson, Irvine. Lancet Oncology 2005

# Early Response Assessment PET scan



## Radiotherapy Field and estimated doses to organs at risk

| Organs at risk |                         |                  |  |  |  |
|----------------|-------------------------|------------------|--|--|--|
|                | Maximium dose received  | <u>Mean Dose</u> |  |  |  |
|                |                         |                  |  |  |  |
| ·              | spinal cord 2139.7 cGy  | 1916.2 cGy       |  |  |  |
| •              | heart 2116.1 cGy        | 1701.4 cGy       |  |  |  |
| ·              | left kidney 2169.1 cGy  | 1439.8 cGy       |  |  |  |
| ·              | right kidney 2022.2 cGy | 639.3 cGy        |  |  |  |
| •              | lung 2148.5 cGy         | 1168.9 cGy       |  |  |  |
| •              | right breast 2195.1 cGy | 476.7 cGy        |  |  |  |
| ·              | left breast 2156.4 cGy  | 654.6 cGy        |  |  |  |
| •              | liver 2153.4 cGy        | 830.2 cGy        |  |  |  |
| -              | thyroid 2047.2 cGy      | 1999.0 cGy       |  |  |  |



### **Ovarian Reserve?**



#### The Wallace-Kelsey Model (Five parameter asymmetric double-Gaussian cumulative curve)



 $log_{10}(y) = \frac{a}{4} \left[ 1 + \operatorname{Erf}\left(\frac{x+b+\frac{c}{2}}{d\sqrt{2}}\right) \right] \left[ 1 - \operatorname{Erf}\left(\frac{x+b-\frac{c}{2}}{e\sqrt{2}}\right) \right]$ 

Wallace & Kelsey (2010) PloS ONE

ESHRE, Lille, 2012

#### Ovarian reserve: A Validated model from Conception to Menopause (NGF population)



Wallace & Kelsey (2010) PloS ONE

# Radiation-induced ovarian damage

#### Human oocyte (Primordial follicle)

 $LD_{50} < 2 Gy$ 

Wallace, Thomson, Kelsey. (2003) Hum Reprod.



## Effective and mean ovarian sterilizing doses of radiotherapy at increasing age



Wallace WH et al. IJRBP (2005)

### Prediction of Ovarian Reserve (AMH)

Anti Mullerian Hormone (AMH) is an important product of the adult ovary, produced by the granulosa cells of small growing follicles

AMH has little variation across and between menstrual cycles

AMH is the best currently available marker of the number of small-growing follicles in the ovary

But there was no validated reference model for AMH available

Anderson, Nelson, Wallace (2011) Maturitas

#### A validated model of serum anti-Mullerian hormone (AMH) from conception to menopause



Kelsey et al. PLoS ONE 2011

### AMH in childhood cancer



Brougham et al 2012 JCE&M

### AMH in 3 girls with cancer



### Summary

AMH is detectable before puberty

AMH falls rapidly during cancer treatment in both pre-pubertal and pubertal girls

AMH levels recover in those patients at low/medium risk of gonadotoxicity

AMH fails to recover in those at high risk. This could be indicative of future reproductive impairment

Brougham et al 2012 JCE&M

### Fertility preservation options: established and experimental



## Key features of the 3 options for fertility preservation for women

#### Embryo cryopreservation

Established but require time and a partner

#### Oocyte cryopreservation

Established but require time and hormone stimulation (success rate per oocyte low)

#### Ovarian tissue cryopreservation

- Minimal delay
- No lower age limit
- Surgical procedure
- Allows for future developments

# Cryopreservation: World-wide experience

- At least 30 pregnancies worldwide after othotopic reimplantation of frozen-thawed ovarian cortex
- Success rate is unclear as the denominator is unknown

No pregnancies reported following the reimplantation of ovarian tissue harvested prepubertally

Young children are potentially ideal candidates

Donnez, J. & Dolmans, M.-M. Nat. Rev. Endocrinol. 9, 735–749 (2013)

### Cryopreservation: European experience

Three centres ( Denmark, Spain and Belgium)

60 cases of orthotopic reimplantation.

Of these women, 11 (21%) became pregnant

Six have delivered 12 healthy babies.

Restoration of ovarian activity was observed in 93% of the patients between 3.5 months and 6.5 months after grafting

The mean duration of ovarian function after transplantation is  $\sim$ 4–5 years but can persist for up to 7 years.

Donnez, J. et al. Fertil. Steril. 99, 1503–1513 (2013).

### Ovarian Cryopreservation & Ovarian Function

Edinburgh experience in children (< 18 yrs) 1996-2012

### Cryopreservation of ovarian cortical tissue – Edinburgh criteria

Selection criteria (1995, modified 2000)

Age < 35 years

- No previous chemotherapy/radiotherapy if age >15 years
- Mild, non gonadotoxic chemotherapy if < 15 years
- A realistic chance of surviving five years

A high risk of ovarian failure

- Informed consent (parent and where possible patient)
- Negative HIV and Hepatitis serology No existing children

### Edinburgh Paediatric Experience

#### Table 3: Patients that had ovarian tissue cryopreserved

| Patient |                                         | Age at    |                             |               |
|---------|-----------------------------------------|-----------|-----------------------------|---------------|
| No.     | Diagnosis                               | procedure | Method                      | Complications |
| 1       | Hodgkin's lymphoma <sup>¤</sup>         | 14.9      | Laproscopic Cortical Strip  | None          |
| 2       | Ewing's sarcoma of pubic bone           | 14.9      | Laproscopic Cortical Strip  | None          |
| 3       | Sacral ependymoma                       | 11.3      | Laproscopic Cortical Strip  | None          |
| 4       | Hodgkin's lymphoma                      | 13.7      | Laproscopic Cortical Strip  | None          |
| 5       | Hodgkin's lymphoma                      | 11.0      | Laproscopic Cortical Strip  | None          |
| 6       | Chronic granulocytic leukaemia          | 9.9       | Laproscopic Cortical Strip  | None          |
| 7       | Rhabdomyosarcoma                        | 5.3       | Laproscopic Cortical Strip  | None          |
| 8       | Ewing's sarcoma (pelvic)                | 9.8       | Laproscopic Cortical Strip  | None          |
| 9       | 9 Uterine Cervix Rhabdomyosarcoma* 16.5 |           | Laproscopic Cortical Strip  | None          |
| 10      | Hodgkin's lymphoma <sup>o</sup>         | 14.1      | Laproscopic Cortical Strip  | None          |
| 11      | Abdominal embryonal Rhabdomyosarcoma    | 7.9       | Laproscopic Cortical Strip  | None          |
| 12      | Ewing's sarcoma                         | 12.1      | Laproscopic Cortical Strip† | None          |
| 13      | 13 Hodgkin's lymphoma                   |           | Laproscopic Cortical Strip  | None          |
| 14      | Metastatic Medulloblastoma              | 8.1       | Laproscopic Cortical Strip  | None          |
| 15      | Hodgkin's lymphoma                      | 15.2      | Laproscopic Cortical Strip  | None          |
| 16      | Alveolar Rhabdomyosarcoma               | 10.5      | Laproscopic Cortical Strip  | None          |
| 17      | Embryonal Rhabdomyosarcoma              | 3.0       | Oophorectomy                | None          |
| 18      | Ewing's Sarcoma                         | 12.0      | Laproscopic Cortical Strip  | None          |
| 19      | Undifferentiated Sarcoma                | 12.3      | Laproscopic Cortical Strip† | None          |
| 20      | Wilm's Tumour                           | 1.2       | Oophorectomy                | None          |







#### OFFERED CRYOPRESERVATION - procedure declined



#### NOT OFFERED CRYOPRESERVATION



### Life Table Analysis of POI



### Summary

- Ovarian cryopreservation was offered to 8% of our patients, and performed in 5%
- The procedure was safe and without complications
- No patients have asked for re-implantation of their tissue to date (15.7 [1.3-30.9] yrs)
- All patients who have thus far (bar one) developed premature ovarian insufficiency were identified
- The Edinburgh Selection Criteria have proved to be helpful and accurate in determining the correct patients for ovarian cryopreservation

## The "Burn-Out" mechanism post transplantation





### Oocyte or granulosa cells?

Newborn mouse ovary culture system Morgan et al. 2013, PLoS ONE

#### Cisplatin and doxorubicin: a mouse ovary culture system



# Cisplatin and Doxorubicin (Mouse ovary)

Cisplatin showed oocyte-specific damage

Doxorubicin preferentially caused damage to the granulosa cells

Suggestion:

Imatinib protected the mouse ovary against damage by cisplatin but not doxorubicin

Morgan et al, 2013, PlosOne

## Uterine volume and age at irradiation (TBI)



### Uterine function after cancer treatment

No reports of uterine damage due to chemotherapy

#### Radiotherapy:

Uterine damage, manifest by impaired growth and blood flow.

Uterine volume correlates with age at irradiation.

Exposure of the pelvis to radiation is associated with an increased risk of miscarriage, mid-trimester pregnancy loss, PPH, pre-term birth and low birth weight.



### FSH and semen concentration by # of MOPP cycles in paediatric HL



Van Beek 2007

### Radiation-induced testicular damage

Germinal epithelium >1.2Gy azoospermia Leydig cells >20Gy pre-pubertal >30Gy post-pubertal

### Leydig cell function after radiotherapy

Preliminary multivariate analysis of studies that report Age at RT, Dose to testes, Interval between RT and follow up measurement of Testosterone - suggests that the most important factors affecting testosterone after radiation exposure to the testes are:

Dose received by testis P < 0.05

Time Interval after radiotherapy P < 0.05

Age at treatment NS

Li, Kelsey, Wallace (unpublished data)

### EuroNet-PHL-C-1



CRUK support 400K

### EuroNet-PHL-C1 Chemotherapy question

EFS by randomised CT



### EuroNet-PHL-C1 Radiotherapy question

EFS by RT



### Data in follow-up

Boys in DB:N=920Boys and past puberty: (age $\geq$ 16 or Tanner>3)N=479Boys, past puberty, > 6 months off chemo:N=335Boys, past puberty, > 6 months off chemo and FSH:N= 67

Evaluable on FSH: 67/335= 20%)

|        | TG-1 | TG-2 | <b>TG-3</b> |    |
|--------|------|------|-------------|----|
| Sum    |      |      |             |    |
| noCOPP | 16   | 9    | 18          | 43 |
| СОРР   | 1*   | 8    | 15          | 24 |
| Sum    | 17   | 17   | 33          | 67 |

### Density plots suggest COPP effect



#### FSH Z-transformed based on individual normal ranges

FSH Z-Score

# FSH Z score and exposure to procarbazine



,

### Azoospermia rates

COPP 2/3 COPDAC 0/4

### Males: Fertility preservation

Young men who can produce semen should have the opportunity of sperm banking before treatment begins

Sperm retrieval should be considered if the chances of infertility are high and the testes are >10mls

- Storage of gametes is governed by the HFE act 1990
- Written informed consent from a competent male is required

There is currently no established option to preserve fertility in the pre-pubertal boy....

#### Cryopreservation of pre-pubertal testis tissue prior to cancer treatment

Boys undergoing cancer treatment with >80% risk of infertility

Biopsy to be taken with routine procedure

Storage by Tissue Services according to 'mature' or 'immature' protocol

Small piece of tissue to be used for research

**Ethical Approval Granted - September 2013** 

### Human Testis Xenografting



### Human Testis Xenografts

Grafting Period – 6wks



Green = germ cells (arrows) Red = Sertoli cells

### Algorithm for Tissue Cryopreservation



### Challenges

Provide fertility counseling to all young patients with cancer

Cryopreserve ovarian and pre-pubertal testicular tissue from the right (high risk) patients

Define the success rate of the procedures

Develop IVG/M as a safe alternative to reimplantation through basic research

### Acknowledgements

Tom Kelsey Richard Anderson Evelyn Telfer Marie McLaughlan Rod Mitchell Alice Grove Smith George Galea Louise Bath Chris Kelnar Angela Edgar Mark Brougham Phoebe Wright

## **Thank You**



### EuroNet-PHL-C-1



Wallace WH. UK Chief Investigator

CRUK support 400K